Bimetal thermometer Model 55, stainless steel version

WIKA data sheet TM 55.01

for further approvals see page 6

Applications

- General process instrumentation in the chemical and petrochemical industries, oil and gas industries, energy and water/wastewater industries
- Temperature measurement in harsh and aggressive environments

Special features

- Scale ranges from -70 ... +600 °C
- For extreme ambient temperatures
- Maintenance-friendly bayonet case
- All stainless steel construction
- Individual stem length from 63 ... 1,000 mm

Fig. left: Bimetal thermometer, model R5502 Fig. right: Bimetal thermometer, adjustable stem and dial, model S5550

Description

The model 55 bimetal thermometer has been developed and is manufactured in accordance with the EN 13190 standard. The high-quality thermometer has been designed especially for the requirements of the process industry. Especially in the chemical and petrochemical, oil and gas, and power engineering industries, the temperature measuring instrument completely manufactured from stainless steel is used successfully.

The model 55 satisfies the high requirements for resistance against aggressive media. As an option, the case, the stem and the process connection can be made from 316Ti (1.4571) to fulfil the highest requirements.

To allow optimum fitting to the process, individual insertion lengths and different process connections can be selected.

When it comes to harsh climatic conditions at the place of use, the model 55 is the right choice, as it can be used at temperatures ranging from -40 °C to +70 °C.

WIKA data sheet TM 55.01 · 03/2015

Page 1 of 6

Standard version

Measuring element

Bimetal coil

Nominal size in mm

63, 100, 160

Connection designs

- S Standard (male threaded connection)
- 1 Plain stem (without thread)
- 2 Male nut
- 3 Union nut
- 4 Compression fitting (sliding on stem)
- 5 Union nut and loose threaded connection

Model overview

Model	NS	Version
A5525	63	Back mount (axial)
A5500	100	
A5501	160	
R5526	63	Lower mount (radial)
R5502	100	
R5503	160	
S5550	100	Back mount, adjustable stem and dial
S5551	160	

Accuracy class

Class 1 per EN 13190

Working range

Normal (1 year): Measuring range (EN 13190) Short time (24 h max.): Scale range (EN 13190)

Case, bayonet ring

Stainless steel 1.4301 (304)

Stem, process connection

Stainless steel 1.4571 (316Ti)

Dial

Aluminium white, black lettering

Window

Instrument glass

NS 63: window from polycarbonate

Pointer

Aluminium, black, micro adjustable pointer

Zero adjustment

on case back side, external only for adjustable stem and dial (option)

Insertion length L₁

63 ... 1,000 mm

minimum/maximum length is dependent on the measuring range and diameter

Permissible temperatures

-50 ... +70 °C (without case filling liquid) -40 ... +70 °C (with case filling liquid) for storage, transport and ambient at case

Permissible operating pressure at the stem

max, 25 bar, static

Ingress protection

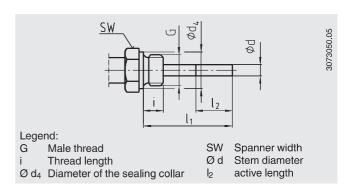
IP 65 per EN 60529

Options

- Scale range °F, °C/°F (dual scale)
- Liquid damping up to max. 250 °C (at the sensor)
- Laminated safety glass, clear non-splintering plastic
- Stem diameter 6, 10, 12 mm
- Ingress protection IP 66
- Thermometer with switch contacts (data sheet TV 25.01)
- Special measuring ranges or dial printing to customer specifications (on request)
- Version per ATEX Ex II 2 GD c TX

Scale ranges, measuring ranges 1), error limits (EN 13190) Scale graduation per WIKA standard

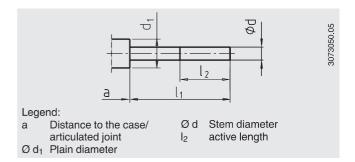
Scale range in °C	Measuring range ¹⁾ in °C	Scale spacing in °C	Error limit ±°C
-70 +30	-60 +20	1	1.0
-50 +50	-40 +40	1	1.0
-30 +50	-20 +40	1	1.0
-20 +60	-10 +50	1	1.0
0 60	10 50	1	1.0
0 80	10 70	1	1.0
0 100	10 90	1	1.0
0 120	10 110	2	2.0
0 160	20 140	2	2.0
0 200	20 180	2	2.0
0 250	30 220	5	2.5
0 300	30 270	5	5.0
0 400	50 350	5	5.0
0 500	50 450	5	5.0
0 600	100 500	10	10.0


¹⁾ The measuring range is indicated on the dial by two triangular marks. Only within this range is the stated error limit valid per EN 13190.

Connection designs

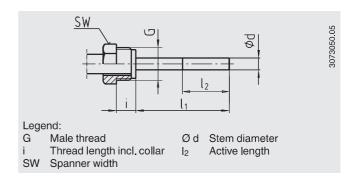
Standard design (male thread connection)

Connection, male: G $\frac{1}{2}$ B, G $\frac{3}{4}$ B, $\frac{1}{2}$ NPT, $\frac{3}{4}$ NPT Insertion length I₁ = 63, 100, 160, 200, 250 mm


Nominal size	Process c	Dimensions in mm			
NS	G	i	sw	d_4	Ød
63, 100, 160	G 1/2 B	14	27	26	8
	G 3/4 B	16	32	32	8
	½ NPT	19	22	-	8
	3/4 NPT	20	30	-	8

Design 1, plain stem (without thread)

Insertion length I₁ = 140, 200, 240, 290 mm


Nominal size	Dimensions in mm						
NS	d ₁	Ød	d a for a for				
			axial	adjustable stem and dial			
63	14	8	15	25			
100, 160	18	8	15	25			

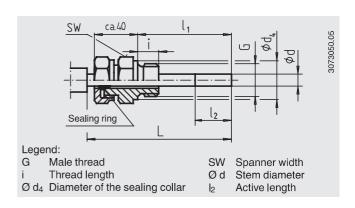
Design 2, male nut

Insertion length $I_1 = 80, 140, 180, 230 \text{ mm}$

Nominal size	Process of	connection	Dimensions in mm		
NS	G	i i	SW	Ød	
63, 100, 160	G 1/2 B	20	27	8	

Design 3, union nut

Insertion length $I_1 = 89, 126, 186, 226, 276 \text{ mm}$


Nominal size	Process c	onnection	Dimensions in mm		
NS	G ₁	i	SW	Ød	
63, 100, 160	G ½	8.5	27	8	
	G 3/4	10.5	32	8	
	M24 x 1.5	13.5	32	8	

Legend: G₁ Female thread Ø d Stem diameter i Thread length I₂ Active length SW Spanner width

Design 4, compression fitting (sliding on stem)

Standard insertion length I_1 = 63, 100, 160, 200, 250 mm Length L = I_1 + 40 mm

Nominal size	Process of	Dimensions in mm			
NS	G	i	sw	d ₄	Ød
63, 100, 160	G ½ B	14	27	26	8
	G ¾ B	16	32	32	8
	M18 x 1.5	12	24	23	8
	½ NPT	19	22	-	8
	3/4 NPT	20	30	-	8

Design 5, union nut and loose threaded connection

G $\frac{1}{2}$ B, G $\frac{3}{4}$ B, M18 x 1.5 and $\frac{1}{2}$ NPT, $\frac{3}{4}$ NPT Minimum immersion depth Imin approx. 60 mm Insertion length I_1 = variable Length $L = I_1 + 40 \text{ mm}$

M18 x 1.5 12

½ NPT

3/4 NPT

Stainless steel 1.4571

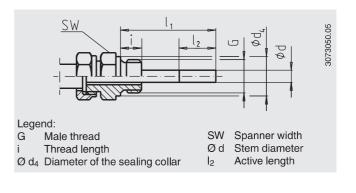
Nominal size	Process	Dimensions in mm			
NS	G	i	SW	d ₄	Ød
63, 100, 160	G ½ B	14	27	26	8
	G 3/4 B	16	32	32	8

19

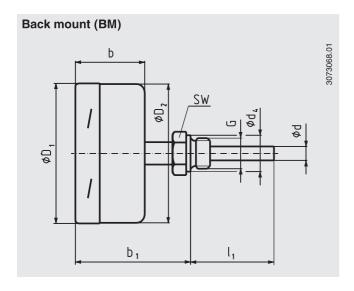
20

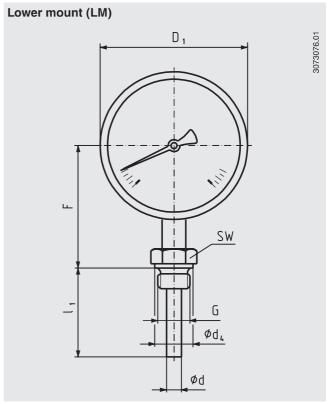
24

22

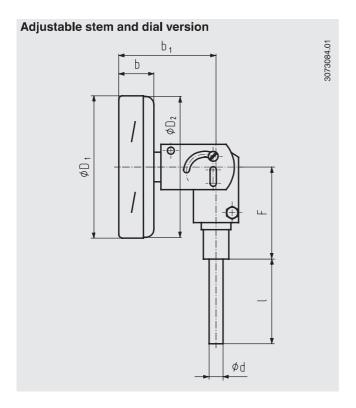

30

23


8


8

8


Dimensions in mm

NS	S Dimensions in mm									Weight in kg	
	b	b ₁ 1)	d ²⁾	d_4	$ØD_1$	$ØD_2$	F 1)	G	SW	Model A55xx	Model R55xx
63	35	60	8	26	64	62	57	G ½ B	27	0.25	0.25
100	50	83	8	26	101	99	83	G ½ B	27	0.8	0.8
160	50	83	8	26	161	159	113	G ½ B	27	1.1	1.1

¹⁾ With scale ranges \geq 0 ... 300 °C the dimensions increase by 40 mm 2) Option: stem Ø 6, 10, 12 mm

NS	Dime	Weight in kg					
	b	b ₁	d ¹⁾	$ØD_1$	$ØD_2$	F	Model S55xx
100	25	68	8	101	99	68	0.5
160	25	68	8	161	159	68	0.7

¹⁾ Option: stem Ø 6, 10, 12 mm

Thermowell

In principle, the operation of a mechanical thermometer without a thermowell with low process-side loading (low pressure, low viscosity and low flow velocities) is possible.

However, in order to enable exchanging the thermometer during operation (e.g. instrument replacement or calibration) and to ensure a better protection of the instrument and also the plant and the environment, it is advisable to use a thermowell from the extensive WIKA thermowell portfolio.

For further information on the calculation of the thermowell, see Technical information IN 00.15.

CE conformity

ATEX directive (option) 94/9/EC, II 2 GD c TX

Approvals (options)

- NEPSI, ignition protection type "ia" intrinsic safety, China
- EAC, import certificate, ignition protection type "c" constructional safety, customs union Russia/Belarus/ Kazakhstan
- GOST, metrology/measurement technology, Russia
- CRN, safety (e.g. electr. safety, overpressure, ...), Canada

Certificates (options)

- 2.2 test report
- 3.1 inspection certificate
- DKD/DAkkS calibration certificate

Approvals and certificates, see website

Ordering information

Model / Nominal size / Scale range / Connection size / Connection location / Options

© 2008 WIKA Alexander Wiegand SE & Co, KG, all rights reserved.

The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

Page 6 of 6

WIKA data sheet TM 55.01 · 03/2015

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany

Tel. +49 9372 132-0 Fax +49 9372 132-406

info@wika.de www.wika.de